
Research Institute for Advanced Computer Science
NASA Ames Research Center

Modula-2*: An Extension of Modula-2

for Highly Parallel Programs

Walter F. Tichy* and Christian G. Herter

RIACS at NASA Ames Research Center _

RIACS Technical Report 89.34

September 1989

l) /_'7_- JYzJ_',':a'_

L

(NASA-CR-IBB855) MOOULA-Z_: AN EXTENSION OF

MODULA-2 FOR HIGHLY PARALLEL PROGRAMS

(Research Inst. for Advanced Computer

Science) 22 p CSCL 09B
c3/61

N92-I1654

Unclas

0043041

Modula-2*: An Extension of h/Iodula-2

for Highly Parallel Programs

Walter F. Tichy* and Christian G. tlerter

RIACS at NASA Ames Research Center t

RIACS Technical Report 89.34

September 1989

t

i
,!

?..

Modula-2*: An Extension of Modula-2

for Highly Parallel Programs

Walter F. Tichy* and Christian G. Herter

RIACS at NASA Ames Research Center t

RIACS Technical Report 89.34

September 1989

Abstract

Highly parallel computers with tens of thousands of processors will

be of rapidly growing importance for highspeed computation. Paral-

lel programs for these machines should be machine-independent, i.e.,

independent of properties that are likely to differ from one parallel

computer to the next. In particular, parallel programs should be inde-

pendent of:

1. memory organization and communication network,

2. number of physical processors available,

3. control mode of the parallel computer (SIMD, MIMD, or MSIMD).

This paper describes extensions of Modula-2 for writing highly par-

allel, portable programs meeting these requirements. The extensions

are:

• Synchronous and asynchronous forms of a forall statement;

• Control of the allocation of data to processors.

Sample programs written with the extensions demonstrate the clar-

ity of parallel programs when rrmchine-dependent details are omitted.

The principles of efficiently implementing the extensions on SIMD,

MIMD, and MSIMD machines are discussed. The extensions are small

enough to be integrated easily into other imperative languages.

"Supported by Cooperative Agreement NCC 2-387 between the National Aeronau-
tics and Space Administration (NASA) and the Universities Space Research Association

(USRA).
tAuthors' permanent address: University of Karlsruhe, D-7500 Karlsruhe, FRG.

1 Introduction

Highly parallel machines with thousands and tens of thousands of proces-

sors are now being manufactured and used commercially. These machines

will be of rapidly growing importance for highspeed computation. They

also indicate that a fundamental paradigm shift from the sequential to the

parallel computer is in progress. This shift is fundamental because it affects

virtually all areas of computer science, computer engineering, and computer
applications.

Ease of programming will be of overwhelming importance for the accep-

tance of highly parallel machines. At present, writing highly parallel pro-

grams is still a poorly understood and extremely complicated craft. What

makes highly parallel programs difficult to write and maintain is that they

must deal with a plethora of machine-dependent details such as the memory

organization and interconnection network, the number of processors avail-

able, and whether the target machine runs in SIMD or MIMD mode. To

make parallel programs easier to write, maintain, and port, parallel pro-

gramming languages must abstract from machine-dependent details and al-

low programs to be formulated in a problem-oriented way.

The current programming style for machines such as the 65,000-processor

Connection Machine[3,7] is best characterized as "interconnection program-

ming". This style involves exploiting details about the interconnections

among processors and memory units for squeezing the last bit of perfor-

mance out of the available hardware. Interconnection programming has the

same undesirable properties as assembly programming: Programs are diffi-

cult to understand and maintain, and have to be rewritten for every new

machine type. The rational for interconnection programming is that the
communication networks of today's parallel computers are critical bottle

necks, much too slow compared to the speed of the processors. However,

given the youth of the field, l_aral]_memory organization and compiler

technology are likely to improve significantly, and might render interconnec-

tion programming as obsolete as assembly programming. It the_refor_e seems

approi_r_te::t_ign programmln-g languages in _v_ details about the

memory organization and interconnection network are irrelevant. Instead,

programs should simply exchange data by reading and writing memory in

parallel, while fast interconnection hardware and compiler technology im-

plement efficient data transport. The goal is to let the problem dictate the

data exchanges, and not a particular computer architecture.

A related machine dependence involves the number of physical proces-

2

sots. On most parallelmachinestoday, programmersare repeatedlyfaced
with the problemof simulatinga largenumberof parallelthreadsof control
ona comparatively small number of real processors. The resulting programs

are extremely difficult to understand, because the code for multiplexing the

processors and for packaging and shifting the data accordingly may obscure

even simple algorithms. Instead, the problem and the algorithm should dic-

tate the number of processes to be used, and the underlying runtime system

should organize the allocation of data and processes to real memories and

processors.

A third issue when programming parallel machines is whether they ex-

ecute in the modes MIMD, SIMD, or MSIMD. MIMD stands for multiple

instruction streams, multiple data streams and means that each hardware

processor has its own instruction pointer, executing its own program on its

own data. Processors run independently of each other, except when syn-

chronizing or exchanging data. SIMD stands for single instruction stream,

multiple data stream and means that all processors execute the same in-

structions in synchrony on their own data, or idle for some instructions. An

SIMD machine consists of a single control processor and a large number of

processing dements. The control processor stores the program and issues

the instructions to the processing elements. Because of the synchronous ex-

ecution and the elimination of many race conditions, an SIMD machine is

easier to program than an MIMD machine. An SIMD machine also costs

less to build than an MIMD machine, First, it needs less memory, be-

cause the program is stored only once. Second, the processing elements are

simple arithmetic and logic units without program counters, and therefore

cheaper to build than full-fledged, general-purpose CPUs. These savings

are important for machines that incorporate tens of thousands of processing

dements. The drawback is that an SIMD machine may be difficult to utilize

fully: Whenever an instruction is issued, only a portion of the processing

elements may actually be in a state where they can execute it; the rest of

them idle.

A compromise between MIMD and SIMD is MSIMD, short for multiple

SIMD. An MSIMD machine is similar to an SIMD machine, except that the

single controller is replaced by several, each of which may issue a different

stream of instructions. The processing elements can choose dynamically

which instruction stream to follow. The underlying assumption is that, al-

though a parallel program may branch out into several independent threads

of control, the number of such threads is much smaller than the number of

processing elements. For instance, two branches of an IF-statement could

' 3

be executedsimultaneouslyon an MSIMD machine with two controllers,

while an SIMD machine would first idle one set of the processing elements,

then the other. MSIMD may also be viewed as VLIW SIMD, or Very-Large-
Instruction-Word SIMD.

It is evident that writing a program explicitly for an MIMD, SIMD, or

MSIMD machine is another source of machine-dependence. For example, a

program written for an MIMD computer such as the N-Cube will normally

not run on an SIMD computer such as the Connection Machine, and vice

versa. To preserve portability, parallel programs should be written in such a

way that the synchronous or asynchronous parallelism is determined by the

problem at hand, not dictated by a particular machine architecture. It is the

task of the compiler to map synchronous or asynchronous parallelism to the

capabilities of the available hardware. The synchronous and asynchronous

language constructs presented below can be executed efficiently on MIMD,

SIMD, and MSIMD architectures.

The rest of the paper discusses Modula-2*, an extension of Modula-

2[8] for writing highly parallel programs. The extensions abstract from

the memory organization and the number of physical processors, and let

the programmer choose explicitly between synchronous and asynchronous

execution. The necessary extensions were surprisingly small. We chose

Modula-2 as a base, because we wanted to start experimenting with a sim-

ple language. Similar extensions can be integrated into other imperative

programming languages, such as C++ or Ada. We also discuss the prin-

ciples of how to implement the constructs on MIMD, SIMD, and MSIMD
machines.

2 Parallel Programming Constructs

The extensionsof Modula-2 consistof synchronous and asynchronous ver-

sionsof a forallstatement,plus a simple,optionaldeclarationformapping

array data onto processors.Furthermore, the restrictionsin Modula-2 on

compile-timeevaluationofarraybounds had tobe lifted,toallowforflexible,

parallel array processing.

For presenting the syntax of the extensions, we use the EBNF notation of

the Modula-2 language definition[8], with keywords in upper case, I denoting

alternation, (...) grouping, and [...] optionality of the enclosed sentential
form. ___ _ _ :_ _.... :

2.1 Overview of the forall statement

The forallstatement createsa setof processesthat execute in parallel.In

the asynchronous form, the individualprocessesoperate independently;the

forallsimply terminateswhen the lastof the createdprocessesterminates.

In the synchronous form, the processescreatedby the foralloperatein uni-

son,but may branch out intomutua_y independent subsetsand then rejoin.

Although the asynchronous form isthe more generalone, the synchronous

form iseasierto understand because itcauses fewer race conditions,justas

a clocked hardware circuitcausesfewer race conditionsthan an unclocked

one. Where necessary,explicitsynchronizationofasynchronous processesis

possiblewith semaphores and the proceduresSEND and WAIT, as specified

(thou_,_hnot as implemented) in Chapter 30 of [8].

The syntax of the forallisas follows.

ForalIStatement= FORALL ident":" SimpleType IN (PARALLEL ISYNC)

StatementSequence

END

The identifierintroduced by the forallstatement islocalto the state-

ment and follows the usual scope rules. "SimpleType" is an enumera-

tion or a subrange of another enumeration. The basic enumerations IN-

TEGER, CARDINAL, LONGINT, CHAR, and BOOLEAN as wellas any

user-definedenumeration may be used.

is as

1.

2.2 The asynchronous forall

The actionof the asynchronous forallstatement

FORALL C : T IN PARALLEL SS END

follows.

Assume the number of valuesof type T isN. The statement creates

N processes,each suppliedwith a constantC bound to a unique value

of T.

. The N processesexecute the statement sequence SS concurrently.No

assumptions about the relativespeeds of the processesmay be made,

unlessexplicitlysynchronized.The statements in $$ may referto C

or any other identifierglobalto the statement. Ifseveralprocesses

write the same globalvariable,then itisindeterminatewhich value is

eventuallystoredin it.

I

5

3. The forall statement terminates when the last of the N created pro-
cesses terminates.

In the following simple example, an asynchronous forall statement im-

plements a vector addition.

FORALL i: [O..N-I] IN PARALLEL z[i] :- x[i] + y[i] END

Since no two processes created by the forall access the same variable, no

temporal ordering of the processes is necessary. The N processes may exe-

cute at whatever speed. The forall terminates when all processes created

by it have terminated.

Our asynchronous forall is a simplification of the forall statement found

in the dataflow languages VAL and SISAL[6,5]. It can express the same

degree of explicit parallelism as its dataflow variants. However, dataflow

machines can also exploit implicit parallelism, by detecting at runtime that

certain subexpressions are independent, and then executing these subexpres-

sions in parallel. A parallel machine constructed out of numerous, individual

data_low processors might be able to exploit this type of implicit parallelism.

2.3 The synchronous forall

The synchronous forall statement

FORALL C : T IN SYNC SS END

differs from the asynchronous form only in that the created processes execute

the statement sequence SS synchronously. Roughly stated, synchronous ex-

ecution means that all processes that follow the same path through the

control flow graph execute instructions in lock step. However, processes on

differing control flow paths may execute asynchronously. This scheme is not

SIMD, since control flow may diverge in conditional statements. For exam-

ple, consider the synchronous execution of an if statement with two arms.

First, all processes evaluate the condition synchronously. The evaluation

splits the set of processes into two subsets, depending on the result of the

condition evaluation. The subset with processes containing the value TRUE
then executes one arm synchronously, the other subset the other arm. Both

sets may operate simultaneously. Though processes in the same subset op-

erate in lock step, the speed of processes in different arms are incomparable.

When both subsets terminate, they are joined again into one set.

The synchronous forallstatement isa generalizationof the forallfor

SIMD machines described by Hillisand Steele[4].MSIMD machines can

executeour synchronous foralldirectly.SIMD machines can alsoimplement

itefficiently,because thereisno order impliedamong divergingcontrolflow

branches. The lack of orderingpermits a process scheduling that greatly

reduces the idlingof processors.(See Section 3.2 formore details.)

Below isthe predse definitionof synchronous execution.The definition

isrecursiveand given foreach statement type.

Sequence: A statement sequence ofthe form

TI;T2; ... Tk

is executed synchronously by executing the statements Ti synchro-

nously in sequence.

Assignment: An assignment statement of the form

L:=R

is executed synchronously by N processes as follows. First, all N

processes evaluate the designator L synchronously, yielding N (not

necessarily different) results each designating a variable. Second, all

N processes evaluate the expression R synchronously, yielding N (not

necessarily different) values. Third, all processes store their values

computed in the second step into their respective variables computed

in the first step. If the third step results in several values being stored

into the same variable, then it is indeterminate which of those values

will actually be stored after the assignment terminates.

if." An if statement of the form

IF El THEN TTi

ELSIF E2 THEN "Fr2

ii,

ELSE TTk

END

is executed synchronously by N processes as follows. First, all N

processes ewluate expression E1 synchronously. Those processes for

" 7

which E1 evaluatesto TRUE then execute TT1 synchronously,while

the other processesexecute E2 synchronously.Those whose evaluation

ofE2 yieldsTRUE then execute TT2 synchronously,and so on. Thus,

each IF and ELSIF clausedividesthe set ofremaining processesinto

two independent subsets.The processesremaining afterthe lastEL-

SIF clause(ifany) finallyexecute TTk synchronously.No assumptions

may be made about the relativespeeds of pairsifprocessesexecuting

differentexpressionsEi or statementsequences TTi. The synchronous

executionofthe ifstatement terminateswhen the lastnon-empty sub-

set ofprocessesterminates.

while: A while statement of the form

WHILE E DO TT END

isexecuted synchronouslyby N processesasfollows.Assume processes

may be designatedeitheras activeor inactive.

1. Designate all N processes as active.

2. All active processes execute expression E synchronously. Those

processes, whose evaiuation of E yields false, are designated as
inactive.

3. If the set of active processes is empty, then the synchronous exe-
cution of the while statement terminates.

4. Otherwise, the activeprocessesexecute statement sequence TT

synchronously.

Continue with step2..

forall:A foraI1 statement of the form

FORALL D : U ... TT END

isexecuted synchronously by N processesas follows.I First,allN

processes compute the range U in synchrony. Then each of the N

processes spawns a new set of processes given by U. If the forall

specifies synchronous execution, all processes thus created execute the

2This is a synchronous or asynchronous forall nested within another, synchronous
forall.

statement sequence TT synchronously; otherwise, they execute asyn-

chronously. Synchronous execution of the forall terminates, when all

created processes have terminated.

WAIT and SEND: Synchronous execution of a WAIT by N processes

causesallArprocessestoblockifany ofthem blocks.Ifthe N processes

have been blocked,they willcontinueonly afterallindividualprocesses

that caused the blockinghave been unblocked by a SEND from other

processes.Clearly,the N processescannot unblock themselves.

The synchronous executionofexpressions,designators,procedure calls,

case statements,repeat statements,for statements,loop statements,wlth

statements,return statements,and exit statements isdefinedanalogously.

Of specialimportance are procedure and functioncalls,because they allow

multiple,synchronous subprogram invocations.The definitionsare omitted

herefor the sake of brevity.

2.4 Example

Consider the problem of summing the elements of a vector in parallel. By

using a recursive doubling technique, the sum can be computed in O(log N)

time, where N is the length of the vector. Figure 1 illustrates the process.

The recursive doubling technique operates basically by computing partial

sums of length 2, 4, 8,... N. There is a one-to-one mappingbetween process
numbers and elements of the vector. By inspecting the assignment statement

we note that only process i will update the/'th dement of the vector. In the

first iteration, all odd numbered processes are disabled by the if statement,

since that statement has no second arm. Thus, only the even numbered

processes update their respective vector elements. Each of those processes

does so by retrieving the element to the right of V[i] and adding it to V[i].

(The second condition in the if statement makes sure that the last process

does not attempt to access a non-existing vector element.) In the next

iteration, only the processes divisible by 4 will update their values, but this

time they reach for elements that are a distance of 2 away. These are the

even numbered elements. Note that these elements already contain sums of

subvectors of length 2. The reset is thatnow the updated array elements

contain partial sums of length 4. This process continues by doubling the

length of the partial sums in each step, until V[0] contains the desired result.

° 9

IY

v(

12 tE

Z/V��

,) v, lvoI v, lv_

vo

,o_,Iv,_I
)111Vll Iv12

"i vobo,,Iv,,Iv,_i

21v,_,o,,iv,,lv,21

,21v,iv231v3lv,,Iv_lve,l v7Ivs,,lv,_,o,,iv,,iv,,I

Figure 1: Computing the Sum of a Vector

VAR V : ARRAY[O .. N] OF REAL;

VAR stride: CARDINAL;

BEGIN

stride :- 11

WHILE stride <= N DO

FOBALL i : [0 .. N] IN PARALLEL

IF ((i MOD (stride*2))=O) AND ((i÷stride)<=N) THEN

VEil :ffiVii] ÷ Vii÷stride]

END

END;

stride :ffistride * 2

END (* sum in £[0] *)

END

Note that the process selectionissuch that in each iteration,none of

the processesinterfere.Each processreads and writesitsown pairof vector

elements. Thus, we can use the asynchronous form of the forallstatement.

The only requirementisthat allprocessescomplete beforethe next iteration

commences, but that property isassured by the semantics ofthe forall.

I0

For illustrating the use of the synchronous forall, consider interchanging

the whUe and forall statements in the above program. How would that

change the execution of the program? First, each process would now control

its own loop, so the loop control variable stride must be replaced by an

array. Furthermore, the individual processes must now be constrained to

execute synchronously. Otherwise, we would obtain unpredictable results,

because the processes may overtake each other arbitrarily. For instance,

one process might read a vector element that has not yet been updated, or

it might overwrite a vector element whose old value is still needed. The

synchronous forall guarantees that no such interference can happen. The

resulting program is below.

VAR V : ARRAY[O .. N] OF REAL;

VAR stride: ARRAY[O .. N] OF CARDINAL_

BEGIN

FORALL i : [0 .. N] IN SYNC

stride[i] := I;

WHILE stride[i] <= N DO

IF ((i MOD (stride [i]*2))=O) AND ((i+stride[i])<=N) THEN

V[i] := Vii] ÷ V[i÷stride[i]]

END

END;

stride[i] := stride[i] * 2

END (* sum in V[0] *)

END

This program could be transformed again in such a way that not all processes

execute the loop for the same number of steps. Merging the condition of the

if statement into the condition of the while statement would stop each loop

at the right time. Yet another transformation would use N semaphores to

control the summing process asynchronously.

2.5 Allocation of array data

Co-location of data with the processors that operate upon them is impor-

tant for parallel machines without uniform access time to memory locations.

Poor alignment of data and processors may cause excessive communication

overhead. We therefore provide a simple construct for controlling the allo-

cation of array data to the available processors. This construct is optional,

and does not change the meaning of a program; it affects only performance.

' 11

A compiler fora machine with uniform memory accesstime may ignorethe

construct.

The allocationofarraydata toprocessorsiscontrolledwith one allocator

per dimension. The modified declarationsyntax for arraysisas follows:

ArrayType = ARRAY SimpleType [allocator]

{',"SimpleType [allocator]}OF type

allocator = LOCAL ISPREAD [SCATTER

Ifthe allocatorismissing,itisassumed to be SPREAD. The interpre-
tationof the allocatorisas follows.

LOCAL: Allocateallelements ofa dimension marked LOCAL to a single

processor.

SPREAD: Distributethe elements of a dimension marked SPREAD over

allavailableprocessors.Elements whose indicesdifferonly by unityin

the marked dimension must be allocatedto the same processor,as far

as that ispossiblegiven that allavailableprocessorsshould be used.

SCATTER: Distributethe elements of a dimension marked SCATTER

over the availableprocessors.Elements whose indicesdifferonly by

unity in the marked dimension must be allocatedto differentproces-

sors.

As an example, consider the following declarations.

A: ARRAY [I..L] SPREAD [I..H] LOCAL OF T

B: ARRAY [I..L] SCATTER [I..14]LOCAL OF T

The LOCAL allocatorforceseach row of A and B intoone processor. If

the number of availableprocessors,P, islargerthan L, then each row is

allocatedto exactly one processorin both cases. If1 < P <_L, then row

r of A is allocatedto processor((r- 1)+ [L/P]), while row r of B is

allocatedto processor((r- 1)rood P). Thus, SPREAD assignssequences

of [L/P] successiverows to a singleprocessor,while SCATTER distributes

thesesequences over the P processors.

For a multidimensionalarray,thereisat most one dimension where the

differencebetween SPREAD and SCATTER matters. Consider a multidi-

mensional array C with n dimensions.

12

C: ARRAY [ln..unJ allocn ... [11..ul] allocl OF T

1 if alloci = LOCALdi = ui - li + 1 otherwise

f 1-I_=k di if k _< l
D(k, l)

1 otherwise

Determine the largestm(1 _<m _<n) such that

P < D(m, n)

where P is the number of available processors. If no such m exists (i.e.,

P > D(1, n)), then there are enough processors to distribute all elements of

dimensions marked SPREAD or SCATTER to different processors. (There

is no difference between SPREAD and SCATTER in this case.) If m ex-

ists, it identifies the dimension where the difference between SPREAD and

SCATTER applies. If the allocator of that dimension is SPREAD, then

the array dements C_,,... ,jm,...] and C[j,,... ,(Jm .4- 1),...] must be

allocated to the same processor, as far as that is possible, given that all

available processors should be used. If the allocator is SCATTER, then any

two such array elements must be allocated to different processors. _

Dimensions higher than m that are marked SPREAD or SCATTER are

simply distributed over the available processors. Dimensions lower than m

are automatically treated as LOCAL, since there are no additional proces-

sors available to distribute the data. An implementation may also map the

dimensions m and lower into one dimension (i.e., "unroll" them into one,

long vector) and then treat the new dimension according to the allocator of
dimension m.

The function F defined below provides a suitable mapping of elements

C[j,,... ,jl] to processors numbered 0...P- 1. Many other choices are

possible, depending on the interconnections among the processors.

F(m,j,,... ,jl)

G(m,j,,... ,jl) rood P
if allocm = SCATTER

G(m,j,,...,jl)+ rD(m,n)/P]
if allocm = SPREAD

_IfP = D(m), thereisagainno differencebetweenSPREAD and SCATTER.

÷ 13

n

G(rn, j,,...,jl) = _ D(m,i- 1) x S(i) x (jl- u,)

S(i) = { 0 ifalloci=LOCAL1 otherwise

Function F can even be used in the case where P > D(1,n), by setting
m-1.

The SPREAD allocator is used to minimize communication overhead in

case of nearest-neighbor communications, while still utilizing all available

processors. The SCATTER allocator can keep processor utilization high

if segments of an array are not being processed, as for example in LU-

decomposition.

Callahan and Kennedy[l] have made a different proposal for the distri-

bution of array data. In their proposal, programmers must provide explicit

mapping functions for array indices to processor numbers. In our design,

these mapping functions are created automatically from much simpler al-

locators, while keeping the program independent of the number of physical

processors. On the Connection Machine, the default allocation is equiva-

lent to SPREAD. LOCAL or SCATTER allocations must be programmed

explicitly.

2.6 Other extensions of Modula-2

The original definition of Modula-2 in reference [8] places several restrictions

on arrays. The first concerns open arrays. An open array is an array without

declared bounds. Open arrays are essential for subprograms that operate

on arrays whose size is unknown until runtime. Modula-2 allows only one-

dimensional, open arrays. For convenient handling of higher-dimensional

arrays, open array types should be allowed to have more than one dimension.

Multi-dimensional, open arrays are actually proposed for the ISO-standard

of Modula-2[2].

Another troublesome restrictions involves compile-time constants. For

example, the forall statement uses subranges, whose bounds, according to

the original language definition of Modula-2, would have to be compile-

time constants. This restriction is inappropriate for array parameters whose

array bounds are not known until runtime. Similarly, it is often necessary

to create temporary, local arrays whose size is determined by the size of

14

another array that is passed as a parameter. We therefore propose that

constant expressions are evaluated at runtime. When a constant expression

is used in a constant declaration, the expression is evaluated and used to

initialize the constant. No assignments to constants are permitted. When

used as an array bound, a constant expression is evaluated when the array

is allocated; the array bounds remain unchanged for the lifetime of the

array. Similarly, when used in a subrange of a forall statement, a constant

expression is evaluated once and used to determine the number of processes.

The constant expression is not reevaluated for the duration of the forall

statment.

As an example, considerthe procedure Count. Count returnsthe num-

ber of bitsin a bitvectorthat have the valueTRUE. A possiblesolutionis

to sum a vector that is initializedto I where the bitvectorhas the value

TRUE, and to 0 elsewhere.This vectormust be allocatedat runtime,since

itisunknown what sizetochooseat compile time.3 Itwould be wastefuland

awkward to requirethat the callerprovide the array. Count isillustrated

below.

PROCEDURE Count (bits : ARRAY OF BOOLEAN) : CARDINAL;

VAR temp : ARRAY[O .. HIGH(bits)] OF INTEGER;

VAR stride: CARDINAL;

BEGIN

FORALL i : [0 .. HIGH(bits)] IN PARALLEL

IF bits[i] THEN temp[i] := 1

ELSE temp [i] := 0
END

END

(* Now compute the sum of elements of temp with *)

(* recursive doubling, as described earlier. *)

• , •

RETURN temp[O] ;
END Count

Another restriction that can be lifted is that set types must have a base

type with a small cardinality, for example the wordlength of a computer.

With highly parallel machines, there is no rational for such a severe restric-

tion. Instead, sets should be allowed to be as large as memory permits. Of

SSumming the bitvector itself would not work unless each bit occupies a follow word.

15

course,an implementationis freeto packa set type denselyinto memory
words.

3 Implementation of the forall Statement

We consider implementing the synchronous and asynchronous forms of the

forall statement on both synchronous and asynchronous architectures. Par-

ticular emphasis is on how to simulate a large number of processes, p, that

potentially exceeds the number of physical processors, P. We assume p > P

in the following.

3.1 Process-to-processor assignment

An efficient assignment of processes to processors is important when there

are thousands of processors. The assignment can be performed statically by

the compiler, or dynamically by the runtime system. A static assignment

has the advantage of eliminating queues of ready processes. The overhead

for managing these queues might easily exceed the actual work to be done

in a fine-grained parallel algorithms such as those presented earlier. On the

other hand, a poor static assignment might not use the available processors

well. Clearly, any reasonable process assignment must take the allocation of

data to processors and the communication network into account.

As an example, consider the following program fragment.

A: ARRAY[1..q] SPREAD OF T;

B: ARRAY[1..r] SPREAD OF T;

FORALL i: [1..p] IN PARALLEL A[el(p)] := B[e2(p)] END

where el(p) and e2(p) are expressions in p. Without any further assumption

about these expressions and the relations among p, q, and r, a reasonable

assignment is to spread the p processes over the same processors that are

available to the larger of the arrays A and B. Assume these are P p_ocessors.

Let v = fp/P]. Processor i would then execute processes vi, ..., v(i -t- 1)::1

in sequence.

Note that the process-to-processo r assignment may actually change from
statement tostatement within a single forall, depending on what data struc-

tures are being accessed. Control may therefore jump processors from one

statement to the next, or even within a statement. The code produced by a

compiler optimizing for memory references may therefore be quite different

16

from the traditional method of rescheduling a process onto a potentially dif-

ferent processor only at synchronization events. Much research in process

management on highly parallel machines remains to be done.

Many interconnection networks can treat certain communication pat-

terns better than others. For instance, on a hypercube network, near-

neighbor communication in a n-dimensional grid and communication over

distances that are powers of 2 can be treated more efficiently than others.

Suppose the index expressions in the above program fragment are linear in

p, i.e., of the form ci x p + c2, where cl and c2 are constants, perhaps even

powers of 2. In those situations, emcient communication instructions can

be chosen by a compiler optimizing for a hypercube network. Compilers for

other communication networks may be able to exploit other special cases.

Clearly, future research in optimizing compilers must address the problem

of minimizing communication time in highly parallel machines.

3.2 Implementation of the asynchronous forall

The asynchronous forall is easy to implement. Since no assumptions about

the relative speeds of the processes can be made, an implementation is free

to choose any order, for example a fully asynchronous, fully synchronous, a

vectorized, a sequential, or even a random order.

Recall that the asynchronous forall statement does not terminate until

all created processes terminate. Thus, on a MIMD machine, all processes

must perform a synchronization step at the end. An asynchronous reduction

tree similar to the one described for summing the elements of a vector can be

used to avoid linear synchronization time when processes terminate nearly

simultaneously. On an SIMD machine, no such synchronization is necessary.

On an MSIMD machine, only the controllers need to synchronize.

An important issue on an SIMI) machine is how to fully use the avail-

able processors. Recall that whenever control flow splits into two or more

branches, only one set can be fed instructions at a time, while the other sets
idle.

To avoid the idling of processors, more sophisticated scheduling algo-

rithms are possible. The goal is to assign processes to processors in such

a fashion that nearly all processors remain busy. This goal can be accom-

plished with a simple rescheduling at every branchpoint. For example, con-

sider an if statement with two arms, and assume that each of the P physical

processors is assigned v processes. The usual simulation is to feed both arms

of the if statement v times to the processors, effectively idling half of the

i7

processors.Instead,consider the followingscheme. First,each processor

evaluatesthe conditionforallitsassignedprocessesand dividesthem into

two sets,depending on the results.Next, allP processorsselectprocesses

with valueTRUE an then receivethe instructionsforthe correspondingarm

from the controller.When allprocessorsare done with processescontaining

the value TRUE, the controllerswitchesto the other arm. For sufficiently

high r and evenly distributedvaluesof the conditions,few processorswill

actuallyidle,achievingnearlyfullutilization.Note that such a scheduling

isvalidbecause the asynchronous forallmakes no assumptions about the

relativeorder of the two arms of the ifstatement.

On an MSIMD machine, severalbranches can be executingin an over-

lapped fashion,untilthe number of parallelbranches exceeds the number

of availablecontrollers.Up to that point,allprocessorscan be kept busy.

After that,the remaining branches are executed in SIMD fashion,possibly

with reschedulingas discussedabove.

Finally,the asynchronous forallcan be executed efficientlyon vector

computers, since order is immaterial. For simulation on sequentialma-

chines,allthatneeds to be done isto replacethe forallstatement with a for

statement over the same range. Note, however, that such a simpleminded

simulationmay mask many potentialprogramming errors.Perhaps a ran-

domized order of the processesismore appropriatein helpingprogrammers

with detectingerrorswhen testingparallelprograms on sequentialmachines.

3.3 Implementation of the synchronous forall

Clearly, a MSIMD machine can implement the synchronous forall state-

ment directly. When the number of parallel branches exceeds the number of

controllers, the remaining branches must be simulated by multiplexing the

available processors, _ is done on SIMD machines. Since separate control

flow branches execute asynchronously, efficient process scheduling is possi-

ble, as explained in the previous section.

Achieving synchronous execution on an MIMD machine can be expen-

sive. A simple, but inefficient simulation would be to insert a synchroniza-

tion command after every instruction. Then each instruction would essen-

tially take time proportional to the logarithm of the available processors,

which would slow down all programs significantly. Fortunately, a Synchro-

nization command is not needed for every instruction, but only before and

after every memory write. This synchronization suffices])ecause processes

are affected by other processes only through changes in memory. Neverthe-

18

less, a modest amount of hardware for simulating SIMD, such as a global

clock for instruction execution, would provide a much more efficient imple-

mentation of synchronous execution.

If the number of processes exceeds the number of processors, it is impor-

tant that the multiplexing does not violate the semantics of the synchronous

forall. Consider the following statement.

FORALL i: [....] IN SYNC x[i+l] := x[i] END

If process i actually executes before process i + 1, a naive implementation

would produce incorrect results, even on a SIMD machine. Instead, all pro-

cesses have to follow faithfully the steps in the definition of the synchronous

execution of the assignment statement. Each process must first evaluate the

left and right sides of the assignment before any write to memory takes place.

This means that each process must save both a pointer and a value and wait

for all processes to complete their evaluation of the left and right hand sides

before the actual assignment. Since evaluating the right and left sides might

cause side effects (through function calls, for instance), these computations

must be carried out such that they appear synchronously even if there are

more processes than processors.

Correct, synchronous execution requires overhead in space and time.
This overhead can be reduced on both SIMD and MIMD architectures if

the synchronous forall can be transformed into the asynchronous form with

no or infrequent synchronization.

4 Conclusions

We have presented simple language constructs for writing highly paral-

lel, machine-independent programs. These constructs can be implemented

efficiently on SIMD, MSIMD, and MIMD computers. Simple, machine-

independent control over the mapping of data to processors allows compilers

to optimize communication time on architectures with distributed memory.

Work on optimizing compilers for a highly parallel machine is in progress.

References

[1]David Callahan and Ken Kennedy. Compiling programs fordistributed-

memory multiprocessors. The Journal of Supercomputing, 2:151-169,

1988.

19

[2]BSI Modula-2 StandardisationWorking Group. First working draft

Modula-2 standard. 1989.

[3] W. Daniel Hillis. The Connection Machine. The MIT Press, 1985.

[4] W. Daniel HUlls and Guy L. Steele. Data parallel algorithms. Commu-

nications of the A CM, 29(12), Dec. 1986.

[5]James McGraw, Stephen Skedzlelewski,Stephen Allan,Rod Oldehoeft,

John Glauert,Chris Kirkham, BillNoyce, and Robert Thomas. SISAL

Language ReferenceManual. Lawrence Livermore National Laboratory,

March 1985.

[6]James R. McGraw. The val language: descriptionand analysis.A CM

Transactions on Programming Languages and Systems, 4(1):44-82, Jan-

uary 1982.

[7] Horst D. Simon, editor. Scientific Applications of the Connection Ma-

chine. World Scientific Publishing Co., 1989.

[8] Nilaus Wirth. Programming in Modula-2. Springer Verlag, third, cor-

rected edition, 1985.

20

